Site-specific protein immobilization using unnatural amino acids.
نویسندگان
چکیده
Protein immobilization confers the advantages of biological systems to a more chemical setting and has applications in catalysis, sensors, and materials development. While numerous immobilization techniques exist, it is optimal to develop a well-defined and chemically stable methodology to allow for full protein function. This paper describes the utilization of unnatural amino acid technologies to introduce bioorthogonal handles in a site-specific fashion for protein immobilization. To develop this approach a range of solid-supports, organic linkers, and protein immobilization sites have been investigated using a GFP reporter system. Overall, a sepharose resin derivatized with propargyl alcohol has afforded the highest yields of immobilized protein. Moreover, an unnatural amino acid residue protein context has been demonstrated, signifying a necessity to consider the protein site of immobilization. Finally, a resin-conferred stabilization was demonstrated in several organic solvents.
منابع مشابه
Site-specific biotinylation of RNA molecules by transcription using unnatural base pairs
Direct site-specific biotinylation of RNA molecules was achieved by specific transcription mediated by unnatural base pairs. Unnatural base pairs between 2-amino-6-(2-thienyl)purine (denoted by s) and 2-oxo(1H)pyridine (denoted by y), or 2-amino-6-(2-thiazolyl)purine (denoted as v) and y specifically function in T7 transcription. Using these unnatural base pairs, the substrate of biotinylated-y...
متن کاملControlled and oriented immobilization of protein by site-specific incorporation of unnatural amino acid.
Immobilization of proteins in a functionally active form and proper orientation is crucial for effective surface-based analysis of proteins. Here we present a general method for controlled and oriented immobilization of protein by site-specific incorporation of unnatural amino acid and click chemistry. The utility and potential of this method was demonstrated by applying it to the analysis of i...
متن کاملDesigning Peptide and Protein Modified Hydrogels: Selecting the Optimal Conjugation Strategy.
Hydrogels are used in a wide variety of biomedical applications including tissue engineering, biomolecule delivery, cell delivery, and cell culture. These hydrogels are often designed with a specific biological function in mind, requiring the chemical incorporation of bioactive factors to either mimic extracellular matrix or to deliver a payload to diseased tissue. Appropriate synthetic techniq...
متن کاملUnnatural Protein Engineering: Producing Proteins with Unnatural Amino Acids
Less than a decade ago, the ability to generate proteins with unnatural modifications was a Herculean task available only to specialty labs. Recent advances make it possible to generate reasonable quantities of protein with unnatural amino acids both in vitro and in vivo . The combination of solid-phase peptide synthesis and enzymatic or chemoselective ligation now permits construction of entir...
متن کاملA click chemistry approach to site-specific immobilization of a small laccase enables efficient direct electron transfer in a biocathode.
Controlled orientation of a small laccase on a multi-walled carbon nanotube electrode was achieved via copper-free click chemistry mediated immobilization. Modification of the enzyme was limited to only the tethering site and involved the genetic incorporation of the unnatural amino acid 4-azido-L-phenylalanine (AzF). This approach enabled efficient direct electron transfer.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Bioconjugate chemistry
دوره 25 11 شماره
صفحات -
تاریخ انتشار 2014